The Zero Forcing Number of Circulant Graphs
نویسندگان
چکیده
The zero forcing number of a graph G is the cardinality of the smallest subset of the vertices of G that forces the entire graph using a color change rule. This paper presents some basic properties of circulant graphs and later investigates zero forcing numbers of circulant graphs of the form C[n, {s, t}], while also giving attention to propagation time for specific zero forcing sets.
منابع مشابه
On the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملUpper bounds on the k-forcing number of a graph
Given a simple undirected graph G and a positive integer k, the k-forcing number of G, denoted Fk(G), is the minimum number of vertices that need to be initially colored so that all vertices eventually become colored during the discrete dynamical process described by the following rule. Starting from an initial set of colored vertices and stopping when all vertices are colored: if a colored ver...
متن کاملAnti-forcing number of some specific graphs
Let $G=(V,E)$ be a simple connected graph. A perfect matching (or Kekul'e structure in chemical literature) of $G$ is a set of disjoint edges which covers all vertices of $G$. The anti-forcing number of $G$ is the smallest number of edges such that the remaining graph obtained by deleting these edges has a unique perfect matching and is denoted by $af(G)$. In this paper we consider some specifi...
متن کاملOn the forced matching numbers of bipartite graphs
Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M , such that S is contained in no other perfect matching of G. This notion has arisen in the study of .nding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name de/ning set, and for Latin squares...
متن کامل